Design of a Low Power NoC Router using Marching Memory Through type

Ryota Yasudo1, Takahiro Kagami1, Hideharu Amano1, Yasunobu Nakase1, Masashi Watanabe2, Tsukasa Oishi2, Toru Shimizu2, Tadao Nakamura1

1Keio University, Japan

2Renesas Electronics Corp., Japan
Outline

- **Background.**
- *Marching Memory Through Type (MMTH).*
- Proposed router.
- Evaluation.
- Conclusion.
In many-core chips, NoC consumes significant power

- MIT 16-core RAW CMP: 36%
- Intel 80-core Tera FLOPS: 28%
- Intel 48-core SCC: 10%

Reducing the power of NoCs is essential
Input buffers in routers

- Input buffers in routers consume significant part of the total power of NoCs
 - About 46% of the total power [P. Kundu, Workshop on On- and Off-Chip Interconnection Networks for Multicore Systems’06]
 - The largest leakage power consumer [X. Chen et al., ISLPED’03]
 - Dynamic power is also high and it increases rapidly as the traffic increases [T. T. Ye et al., DAC’02]

- Power optimization of input buffer is required
Various approaches: reduction of the power in buffers

Remove buffers completely
- Buffer-less deflection routers
 - [T. Moscibroda and O. Mutlu, ISCA’09]

Reduce the number of buffers
- Reconfigurable routers
 - [D. Matos, et al., IEEE Transactions on VLSI Systems’11]

Utilize next-generation memory
- A Hybrid buffer design with STT-MRAM
 - [H. Jang, et al., NOCS’12]
Our approach

- Using a novel power efficient buffer memory called Marching Memory Through Type (MMTH) in input buffers

- Complicated buffer management is unnecessary
Outline

- Background.
- *Marching Memory Through Type (MMTH).*
- Proposed router.
- Evaluation.
- Conclusion.
What is *Marching Memory*(MM)?

- Novel memory that can avoid the memory bottleneck
- [T. Nakamura and M. J. Flynn, UCAS’10]
- Data are shifted to the CPU synchronized with the clock

Marching Memory

- Information/Data marching

1 memory unit marching time = CPU's clock cycle

- Clock
- AND gate with delay

DRAM based memory cell

September 18, 2014

NOCS 2014
An implementation example of the MM concept

The structure and target are completely different from original MM

Not capacitors, but transparent latches
Behavior of MMTH

Write:
- Data are written from the input port to the column indicated by the W-pointer.

Read:
- Data in the column indicated by the R-pointer are transferred to the output port.

MMTH requires some time delay of signals as read latency
A memory cell is composed of a transparent latch. This structure reduces power and area. Simple memory cell. Local clock is unnecessary.
Power consumption of MMTH

- Power consumption depends on data contents
 - If the same bit is written continuously, switching power is not consumed.

- $BCR (Bit \ Change \ Rate)$: Probability of bit change

![Diagram with BCR and power consumption graph]
Summary:
Characteristics of MMTH

Advantage
- Low power (68% lower power compared to a bunch of FFs)
- High speed (2GHz)
 - Traditional register-based FIFO: works at only 800MHz

Disadvantage
- Read latency (1 clock cycle at 2GHz, 8depth)
Outline

Background.

Marching Memory Through Type (MMTH).

Proposed router.

Evaluation.

Conclusion.
Router architecture

- Standard input-buffered router for 2D mesh
- Virtual-channel flow control (2VCs per input port)

Baseline: a bunch of FFs
Proposed: MMTH
Speculative technique and look-ahead routing are used.

Baseline (using register-based FIFO)

Naive design with MMTH

Extra Buffer Read stage
Reduction of BR stage

Routing information is stored in an additional temporary flit (pre-header flit)

Pre-header flit arrives at the next router 1 clock earlier than header flit

Diagram:
- Header, Body
- Pre-header
- Bypass buffers
- Producer of BR stage
- Buffer#0
- Buffer#1
- Arbiter
- Crossbar
- NRC

September 18, 2014
NOCS 2014
Proposed router pipeline

Clock cycles

Baseline

1 2 3 4 5 6 7 8 9 10 11 12

Router A

Router B

Router C

MM (naive)

MM (proposed)

Pre-header flit bypasses buffers!
Latency from source to destination

$\text{Latency} = 3H$

$\text{Latency} = 4H$

$\text{Latency} = 3H + 1$

H: the number of hops
Additional external signals

- A reset signal
 - Reset MMTH after finishing transmitting a packet

- An invalid signal
 - Invalidate data while BR stage

Invalidate (flit type\(\leq\)none)
Outline

- Background.
- Marching Memory Through Type (MMTH).
- Proposed router.
- Evaluation.
- Conclusion.
Overview of evaluation

- **Performance**: Cycle-accurate simulation
 - GEM5 full system simulator
 - NAS parallel benchmark
 - A set of programs designed to help evaluate the performance of parallel supercomputers.
 - Derived from computational fluid dynamics applications.

- **Power consumption**: RTL-based simulation
 - Renesas 40nm CMOS design technology
 - Apache Power Artist
 - Synopsys Liberty library format
Simulation setup

(a) CMP System Configuration in GEM5 full system simulator

- Processor: X86-64
- # of processors: 4
- # of directories: 4
- # of L2 caches: 16
- L1 I/D cache size: 32KB
- L2 cache size: 256KB
- Coherence protocol: MOESI directory

(b) NoC System Configuration in RTL models

- Clock frequency: 2GHz
- Topology: 2D-Mesh
- # of cores: 4
- # of VCs/input port: 2
- Buffer size: 8flits
- Routing: XY routing
- Arbiter type: Round-robin
- Flit size: 64bit
- Packet size: 1 header + 6 bodies
- Traffic pattern: Uniform

- 4x4 Mesh
- Each router has a L2 cache bank
- Routers in the four corners are connected with processors and directories
Performance overhead: Network simulation

(a) Uniform random traffic

(b) Bit-complement traffic
Performance overhead: Full system simulation

Baseline
MM(naive)
MM(proposed)

Execution time (Normalized)

Benchmark programs

CG: conjugate gradient

10% 2%

September 18, 2014
Bit Change Rate

\[
\text{Power} = P_{\text{min}} + \left(P_{\text{max}} - P_{\text{min}} \right) \frac{\text{BCR}}{100}
\]
Power consumption

The others

Input buffers

Max 45.4%

Ave. 42.4%

Ave. ↑ 13%

Ave. ↓ 68%
Outline

- Background.
- *Marching Memory Through Type (MMTH).*
- Proposed router.
- Evaluation.
- **Conclusion.**
Conclusion

Router using MMTH (a novel power efficient buffer memory) has been presented.

We have compared a router using traditional register-based FIFO and our proposed router.

- It reduces the power consumption by 42.4% on average at 2GHz.
- Performance overhead becomes only 0.5-2.0% by using the proposed mechanism based on look-ahead technique.