A Loosely Synchronizing Asynchronous Router for TDM-Scheduled NOCs

Ioannis Kotleas, Dean Humphreys, Rasmus Bo Sørensen, Evangelia Kasapaki, Florian Brandner1 and Jens Sparsø

1 ENSTA ParisTech, France
Outline

1. Context
2. Background
 - Review of TDM router designs
 Synchronous → Mesochronous → Asynchronous →
3. The new loosely synchronizing Asynchronous router
 - Principle
 - Design
4. Implementation
 - The click-element template (only DFFs and logic)
 - Key click-element components (the conditional fork)
 - Router implementation
5. Results
6. Conclusion
Context

- Two research projects
 - T-CREST
 Time-predictable Multi-Core Architecture for Embedded Systems
 EU FP7 STREP-project (grant no. 288008)
 - RTEMP
 Hard Real-Time Embedded Multiprocessor Platform
 Danish Council for Independent Research | Technology and Production Sciences, Project no. 12-127600

- Multi-Core platforms for real-time systems
 - Focus on WCET

- Research topics
 - Processor architecture
 - Memory hierarchy and memory NOC
 - Message passing NOC
 - Compiler
Context

- **Real-time / WCET** → Guarantees on bandwidth and/or latency
 - (Virtual) circuits
 - Statically scheduled Time-Division-Multiplexing
 - Nostrum [KTH, Jantsch, Millberg]
 - Æthereal, aelite, daelite, ... [TU/e, Goossens, Hansson, ...]
 - Non-blocking routers with a rate-control
 - MANGO [DTU, Bjerregaard 1995]

- **Router complexity:**
 - Synchronous aelite: 1
 - Mesochronous aelite: 2
 - Asynchronous MANGO: 10 (buffers, arbitration, flow-control)

- **GALS (globally synchronous locally asynchronous)**
 - Mainly a requirement to the NOC
 - Mesochronous NOC (clock domain synchronization)
 - Asynchronous NOC
The Argo asynchronous TDM-based NOC

Static scheduling and TDM: Schoebenl at al. NOCS 2012
Router design: Kasapaki, et al. Euromicro 2013
NI design: Sparsø, et al. DATE 2013
Timing analysis: Kasapaki and Sparsø, ASYNC 2014
Scheduler: Sørensen et al. SEUS 2014
Synchronous TDM router

Mesochronous TDM router

Adding Bi-synchronous FIFOs increases area by 1-2 x Router!!
Asynchronous TDM router

Join-Fork principle briefly mentioned in:

No real implementation of a NOC. Timing behaviour of a network of routers is non-trivial.
The loosely synchronizing router - Principle

Valid phits (scheduled, slots used) \textit{Full switching}

Void phit (scheduled, slot not used) \textit{Clock gating}

Idle phit (nothing scheduled) \textit{Clock gating}

\textit{Keep links and router ports silent}
Loosely synchronizing asynchronous router design

Diagram of a loosely synchronizing asynchronous router design showing the flow of data through various blocks and ports.
Loosely synchronizing asynchronous router design
Loosely synchronizing asynchronous router design

Only point of synchronization
Loose synchronization

- Only local ordering of slots
 - For each individual router
 - For each individual Router-NI-port

- Duration of slots is elastic

- Ordering at Router-NI ports can be influenced by NI interface design.
Loosely synchronizing router design
Implementing asynchronous circuits

- Intensive use of C-elements and transparent latches

![Diagram]

- Timing constraints are tricky to handle in EDA-tools
- Std. cell library has no latches that reset to “1”.
- Clock-gating of normally transparent latches is sort of nonsense.

- Click elements (two-phase bundled-data)
 - Ad Peeters et al. ASYNC 2010 [3]
 - Handshake Solutions Inc. stopped its activities soon after ASYNC 2010 paper
 - Uses only edge triggered flip-flops and combinational gates.
 - All signal paths start and end in flip-flops.
Click element based asynchronous design - a handshake register w. gating

Click 0->1 when
• new data is available from the predecessor
and
• successor has acknowledged reception of the current data

Click 1->0 after latency of FF→AND→OR
The buffered conditional fork

A handshake on the "Prev" channel causes a handshake on one or more of the "Next(i)" channels.
Implementation results.

<table>
<thead>
<tr>
<th></th>
<th>Cell area (\text{um}^2)</th>
<th>Cycle time ps</th>
<th>Energy per cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>The new router (65 nm)</td>
<td>36870</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router control</td>
<td>28890</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Router itself</td>
<td>7980</td>
<td>1150</td>
<td>0 – 15.4 pJ / cycle</td>
</tr>
<tr>
<td>Kasapaki [17] (65 nm)</td>
<td>7516</td>
<td>885</td>
<td>1.78 – 8.24 pJ / cycle</td>
</tr>
<tr>
<td>Ghribaldi [20] (40 nm)</td>
<td>4691</td>
<td>915</td>
<td>2.3 pJ / phit</td>
</tr>
</tbody>
</table>
Energy per cycle (phit-slot)

All slots on all ports reserved. U% are valid phits. Others are voids. Clock gating saves power.

Router is fully utilized in U% of the time slots and otherwise all 5 ports are idle.

Actual traffic mix
Conclusion

• Contributions

 – Shown that TDM can be implemented with very relaxed synchrony.

 – An asynchronous router design that implements this.

 – Explored asynchronous design using click-elements.

 – Implemented of a number of new click-element handshake components.